Math 261

Fall 2023
Lecture 31

Feb 19-8:47 AM

$$
\text { Given } z^{2}=x^{2} y^{3}, \frac{d x}{d t}=4, \frac{d y}{d y}=-10 \text {, }
$$

$$
\begin{gathered}
\text { find } \frac{d z}{d t} \text { when } x=8 \dot{\varepsilon} \cdot y=4 . \text {, Assume } z \geq 0 \\
z^{2}=x^{2} y^{3} \quad z^{2}=8^{2} \cdot 4^{3}=64 \cdot 64 \\
\text { for } x=8, y=4 \quad z^{2}=64^{2} \quad z=64 \\
\frac{d}{d t}\left[z^{2}\right]=\frac{d}{d t}\left[x^{2} y^{3}\right] \\
2 z \frac{d z}{d t}=2 x \frac{d x}{d t} \cdot y^{3}+x^{2} \cdot 3 y^{2} \cdot \frac{d y}{d t} \\
2 \cdot 64 \frac{d z}{d t}=2 \cdot 8 \cdot 4 \cdot 4^{3}+8^{2} \cdot 3 \cdot 4^{2} \cdot(-10) \\
128 \frac{d z}{d t}=-26624 \\
\frac{d z}{d t}=-208 \\
z \text { is decreasing }
\end{gathered}
$$

$$
\begin{aligned}
& \text { A right-Circular cone has a height twice } \\
& \text { the radius of its base. } \\
& \text { It is leaking water at the bottom at rate } \\
& \text { of } 3 \mathrm{St}^{3} / \mathrm{min} \text {. Assume the cone is upside } \\
& \text { down. } \\
& \text { How fast is the height of water changing } \\
& \text { when it is } 5 \mathrm{ft} \text { high. } \\
& \qquad r=\frac{h}{2} \\
& \qquad V=\frac{1}{3} \pi r^{2} h \\
& \frac{d V}{d t}=\frac{\pi}{12} \cdot \frac{d}{d t}\left[h^{3}\right] \quad V=\frac{\pi}{3} \pi\left(\frac{h}{2}\right)^{2} \cdot h \\
& \frac{d V}{12}=\frac{\pi}{12} \cdot 3 h^{2} \cdot \frac{d h}{d t} \\
& -3=\frac{\pi}{4} \cdot 5^{2} \cdot \frac{d h}{d t}=\frac{d h}{d t}=\frac{-12}{25 \pi} \\
& \mathrm{ft} / \mathrm{min} .
\end{aligned}
$$

Oct 24-10:35 AM

$$
\begin{aligned}
& \text { At a certain moment, edge of cube is } 8 \mathrm{in} \text {. and } \\
& \text { its volume increasing at } 4 \mathrm{in}^{3} / \mathrm{min} . \quad \frac{d v}{d t}=4 \\
& \text { How fast its surface area changing? } \\
& \text { Increasing or decreasing? why? } \\
& \text { Splore prep } \\
& =\sqrt{x} \\
& \begin{array}{l}
V=x^{3} \\
=6 x^{2}
\end{array} \\
& \begin{aligned}
\frac{d V}{d t} & =3 x^{2} \frac{d x}{d t} \\
4 & =3.8^{2} \frac{d x}{d t}
\end{aligned} \\
& S=6 x^{2} \\
& \frac{d x}{d t}=\frac{1}{3.8 .8} \\
& \frac{d S}{d t}=6 \cdot 2 x \cdot \frac{d x}{d t} \\
& =\frac{1}{48} \mathrm{in} \|_{\text {min }} \\
& =66 \cdot 2 \cdot 8 \cdot \frac{1}{4^{8}} \\
& \begin{array}{r}
\frac{d s}{d t}=2 \mathrm{in}^{2} / \mathrm{min} \rightarrow \text { Increasing because } \\
\frac{d S}{d t}>0
\end{array}
\end{aligned}
$$

A plane is climbing at 30° angle to the horizon

How fast is the plane gaining altitude
if its speed is $500 \mathrm{mi} / \mathrm{hr}$. $\frac{d x}{d t}=500 \mathrm{mi} / \mathrm{hr}$.
$\begin{aligned} x \\ 30^{\circ}\end{aligned} \quad \begin{aligned} \sin 30^{\circ} & =\frac{h}{x} \\ \frac{1}{2} & =\frac{h}{x}\end{aligned} \int \begin{aligned} & x=2 h \\ & \frac{d x}{d t}\end{aligned}=2 \cdot \frac{d h}{d t}$

$$
500=2 \frac{d h}{d t}
$$

$$
\frac{d h}{d t}=250 \text { mi/hr. }
$$

Oct 24-10:53 AM

A man 6 ft tall is walking at the rate of $3 \mathrm{ft} / \mathrm{sec}$ toward a streetlight 18 St tall.
 $\frac{y}{68}=\frac{y+x}{18}$

$$
3 y=y+x
$$

$$
2 y=x
$$

$$
2 \frac{d y}{d t}=-3
$$

$$
\begin{aligned}
2 \frac{d y}{d t}=\frac{d x}{d t} \quad \begin{aligned}
& 2 \frac{d y}{d t}=-3 \\
& \frac{d y}{d t}=-1.5 \\
& \mathrm{ft} / \mathrm{sec} .
\end{aligned}
\end{aligned}
$$

Oct 24-11:10 AM
$f(x)=\frac{x^{2}}{x^{2}-1} \quad$ Domain: All Reads except ± 1

$$
\begin{aligned}
& f^{\prime}(x)=\frac{2 x\left(x^{2}-1\right)-x^{2} \cdot 2 x}{\left(x^{2}-1\right)^{2}}=\frac{-2 x}{\left(x^{2}-1\right)^{2}} \\
& f^{\prime}(x)=0 \rightarrow-2 x=0 \rightarrow x=0
\end{aligned}
$$

$$
f^{\prime}(x) \text { undefined } \rightarrow x^{2}-1=0 \rightarrow x= \pm 1
$$

$$
f^{\prime}(x)=-2 x\left(x^{2}-1\right)^{-2}
$$

$$
f^{\prime \prime}(x)=-2\left[1 \cdot\left(x^{2}-1\right)^{-2}+x \cdot-2\left(x^{2}-1\right)^{-3} \cdot 2 x\right]
$$

$$
=-2\left[\left(x^{2}-1\right)^{-2}-4 x^{2}\left(x^{2}-1\right)^{-3}\right]
$$

$$
=-2\left(x^{2}-1\right)^{-3}\left[\left(x^{2}-1\right)^{1}-4 x^{2}\right]
$$

$$
=-2\left(x^{2}-1\right)^{-3} \cdot\left(x^{2}-1-4 x^{2}\right)
$$

$$
=-2\left(x^{2}-1\right)^{-3}\left(-3 x^{2}-1\right)=\frac{-2 \cdot-\left(3 x^{2}+1\right)}{\left(x^{2}-1\right)^{3}}
$$

$$
=\frac{2\left(3 x^{2}+1\right)}{\left(x^{2}-1\right)^{3}}
$$

$f^{\prime \prime}(x)=0 \rightarrow 2\left(3 x^{2}+1\right)=0 \rightarrow$ No real Soln.
$f^{\prime \prime}(x)$ undefined $\rightarrow x^{2}-1=0 \rightarrow x= \pm 1$

$$
\begin{aligned}
& f(x)=x^{3}-3 x+1 \\
& f^{\prime}(x)=3 x^{2}-3 \\
& \text { Solve } f^{\prime}(x)=0 \\
& 3 x^{2}-3=0 \\
& x= \pm 1 \\
&
\end{aligned}
$$

$$
f^{\prime}(x)=\frac{-2 x}{\left(x^{2}-1\right)^{2}}=\quad f^{\prime \prime}(x)=\frac{2\left(3 x^{2}+1\right)}{\left(x^{2}-1\right)^{3}}=\frac{t}{t}
$$

Do Same thing for $f(x)=\frac{x^{2}-1}{x^{3}}$

